Adafruit Feather 32u4 with Dotstar 144LED RGB Strip HELP!

I am running into an issue that is probably easy to fix but I’m going nuts trying to trouble shoot the issue. I am trying to get my Dotstar RGB strip up and running with the Feather 32u4 board. I Will post everything I think you might need to help but im some what new to this. I will upload the sketch from arduino that I am using as well as how I have wired the pins on the board. I have tested the voltages while its plugged in and im getting 5V from the power which I believe is correct, 2.27 out of data and .27 out of clock pin. The sketch load fine with no errors, I have programmed it to use the controller through the Bluetooth app, but I get nothing out of the Dotstar strips, nothing lights up. I have two strips and two boards to test it on and neither of them work so Im sure its not a hardware issue, and its a user issue so I need some help please:) If I did not give all of the information someone would need to help please let me know what I should include and I will send it ASAP.

#include <Adafruit_DotStar.h>
#include <BluefruitConfig.h>

/ *********************************************************************
 This sketch is based on an example for Adafruit's nRF51822 based Bluefruit LE modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
********************************************************************* /

#include <string.h>
#include <Arduino.h>
#include <SPI.h>
#if not defined (_VARIANT_ARDUINO_DUE_X_) && not defined (_VARIANT_ARDUINO_ZERO_)
  #include <SoftwareSerial.h>
#endif

#include "Adafruit_BLE.h"
#include "Adafruit_BluefruitLE_SPI.h"
#include "Adafruit_BluefruitLE_UART.h"

#include "BluefruitConfig.h"

#include <Adafruit_DotStar.h>

/*=========================================================================
    APPLICATION SETTINGS

    FACTORYRESET_ENABLE    Perform a factory reset when running this sketch
   
    Enabling this will put your Bluefruit LE module
                              in a 'known good' state and clear any config
                              data set in previous sketches or projects, so
    running this at least once is a good idea.
   
    When deploying your project, however, you will
                              want to disable factory reset by setting this
                              value to 0.  If you are making changes to your
    Bluefruit LE device via AT commands, and those
                              changes aren't persisting across resets, this
                              is the reason why.  Factory reset will erase
                              the non-volatile memory where config data is
                              stored, setting it back to factory default
                              values.
       
    Some sketches that require you to bond to a
                              central device (HID mouse, keyboard, etc.)
                              won't work at all with this feature enabled
                              since the factory reset will clear all of the
                              bonding data stored on the chip, meaning the
                              central device won't be able to reconnect.
    PIN Which pin on the Arduino is connected to the NeoPixels?
    NUMPIXELS How many NeoPixels are attached to the Arduino?
    -----------------------------------------------------------------------*/
    #define FACTORYRESET_ENABLE 0

    #define DATAPIN 11
    #define CLOCKPIN 6
    #define NUMPIXELS 144
/*=========================================================================*/

Adafruit_DotStar pixel = Adafruit_DotStar(NUMPIXELS, DATAPIN, CLOCKPIN, DOTSTAR_BGR);

// Create the bluefruit object, either software serial...uncomment these lines
/*
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN, BLUEFRUIT_SWUART_RXD_PIN);

Adafruit_BluefruitLE_UART ble(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
                      BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);
*/

/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line */
// Adafruit_BluefruitLE_UART ble(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);

/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
//Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
// BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
// BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);


// A small helper
void error(const __FlashStringHelper*err) {
  Serial.println(err);
  while (1);
}

// function prototypes over in packetparser.cpp
uint8_t readPacket(Adafruit_BLE *ble, uint16_t timeout);
float parsefloat(uint8_t *buffer);
void printHex(const uint8_t * data, const uint32_t numBytes);

// the packet buffer
extern uint8_t packetbuffer[];


/ ************************************************************************** /
/*!
    @brief Sets up the HW an the BLE module (this function is called
            automatically on startup)
*/
/ ************************************************************************** /
//additional variables

//Color
    uint8_t red = 100;
    uint8_t green = 100;
    uint8_t blue = 100;
uint8_t animationState = 1;

    int pos = 0, dir = 1; // Position, direction of "eye" for larson scanner animation

void setup(void)
{
  //while (!Serial); // required for Flora & Micro
  delay(500);

  // turn off neopixel
  pixel.begin(); // This initializes the pixels.
  for(uint8_t i=0; i<NUMPIXELS; i++) {
    pixel.setPixelColor(i, pixel.Color(0,0,0)); // off
  }
  colorWipe(pixel.Color(100, 100, 100), 20); // do a quick colorWipe to show that the pixels are all working, even before Bluefruit connection established
  colorWipe(pixel.Color(0, 0, 0), 20);
  pixel.show();

  Serial.begin(115200);
  Serial.println(F("Adafruit Bluefruit Neopixel Color Picker Example"));
  Serial.println(F("------------------------------------------------"));

  /* Initialise the module */
  Serial.print(F("Initialising the Bluefruit LE module: "));

  if ( !ble.begin(VERBOSE_MODE) )
  {
    error(F("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check wiring?"));
  }
  Serial.println( F("OK!") );

  if ( FACTORYRESET_ENABLE )
  {
    /* Perform a factory reset to make sure everything is in a known state */
    Serial.println(F("Performing a factory reset: "));
    if ( ! ble.factoryReset() ){
      error(F("Couldn't factory reset"));
    }
  }

  /* Disable command echo from Bluefruit */
  ble.echo(false);

  Serial.println("Requesting Bluefruit info:");
  /* Print Bluefruit information */
  ble.info();

  Serial.println(F("Please use Adafruit Bluefruit LE app to connect in Controller mode"));
  Serial.println(F("Then activate/use the sensors, color picker, game controller, etc!"));
  Serial.println();

  ble.verbose(false); // debug info is a little annoying after this point!

  /* Wait for connection */
  while (! ble.isConnected()) {
      delay(500);
  }

  Serial.println(F(" ***********************"));

  // Set Bluefruit to DATA mode
  Serial.println( F("Switching to DATA mode!") );
  ble.setMode(BLUEFRUIT_MODE_DATA);

  Serial.println(F(" ***********************"));

}

/ ************************************************************************** /
/*!
    @brief Constantly poll for new command or response data
*/
/ ************************************************************************** /
void loop(void)
{
  /* Wait for new data to arrive */
  uint8_t len = readPacket(&ble, BLE_READPACKET_TIMEOUT);
  //if (len == 0) return;

  /* Got a packet! */
  // printHex(packetbuffer, len);

  // Color
  if (packetbuffer[1] == 'C') {
    red = packetbuffer[2];
    green = packetbuffer[3];
    blue = packetbuffer[4];
    Serial.print ("RGB #");
    if (red < 0x10) Serial.print("0");
    Serial.print(red, HEX);
    if (green < 0x10) Serial.print("0");
    Serial.print(green, HEX);
    if (blue < 0x10) Serial.print("0");
    Serial.println(blue, HEX);

// this part colors ALL the pixels according to the app's color picker:
// for(uint8_t i=0; i<NUMPIXELS; i++) {
// pixel.setPixelColor(i, pixel.Color(red,green,blue));
// }
// pixel.show(); // This sends the updated pixel color to the hardware.
  }

  // Buttons
  if (packetbuffer[1] == 'B') {

    uint8_t buttnum = packetbuffer[2] - '0';
    boolean pressed = packetbuffer[3] - '0';
    Serial.print ("Button "); Serial.print(buttnum);
    animationState = buttnum;
    if (pressed) {
      Serial.println(" pressed");
    } else {
      Serial.println(" released");
    }
  }

  if (animationState == 1){ // button labeled "1" in control pad
    for(uint16_t i=0; i<pixel.numPixels(); i++) { //clear all pixels before displaying new animation
          pixel.setPixelColor(i, pixel.Color(0,0,0));
        }
     flashRandom(5,random(10,30));
     pixel.show(); // This sends the updated pixel color to the hardware.
   }

  if (animationState == 2){ // button labeled "2" in control pad
    for(uint16_t i=0; i<pixel.numPixels(); i++) { //clear all pixels before displaying new animation
          pixel.setPixelColor(i, pixel.Color(0,0,0));
        }
    racingStripe(pixel.Color(red, green, blue));

  }

  if (animationState == 3){ // button labeled "4" in control pad
    for(uint16_t i=0; i<pixel.numPixels(); i++) { //clear all pixels before displaying new animation
          pixel.setPixelColor(i, pixel.Color(0,0,0));
        }
    fillAll(pixel.Color(red, green, blue));
    pixel.show(); // This sends the updated pixel color to the hardware.
  }
if (animationState == 4){ // button labeled "3" in control pad
    for(uint16_t i=0; i<pixel.numPixels(); i++) { //clear all pixels before displaying new animation
          pixel.setPixelColor(i, pixel.Color(0,0,0));
        }
    rainbow(5); // larsonScanner is set to red and does not take color input.
    pixel.show(); // This sends the updated pixel color to the hardware.
  }


if (animationState == 5){
  for(uint16_t i=0; i<pixel.numPixels(); i++) {
    pixel.setPixelColor(i, pixel.Color(0,0,0));
  }
  larsonScanner(30);
  pixel.show();
}
}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
  for(uint16_t i=0; i<pixel.numPixels(); i++) {
      pixel.setPixelColor(i, c);
      pixel.show();
      delay(wait);
  }
}

void larsonScanner(uint8_t wait){
   int j;

 for(uint16_t i=0; i<pixel.numPixels()+5; i++) {
  // Draw 5 pixels centered on pos. setPixelColor() will clip any
  // pixels off the ends of the strip, we don't need to watch for that.
  pixel.setPixelColor(pos - 2, 0x100000); // Dark red
  pixel.setPixelColor(pos - 1, 0x800000); // Medium red
  pixel.setPixelColor(pos , 0xFF3000); // Center pixel is brightest
  pixel.setPixelColor(pos + 1, 0x800000); // Medium red
  pixel.setPixelColor(pos + 2, 0x100000); // Dark red

  pixel.show();
  delay(wait);

  // Rather than being sneaky and erasing just the tail pixel,
  // it's easier to erase it all and draw a new one next time.
  for(j=-2; j<= 2; j++) pixel.setPixelColor(pos+j, 0);

  // Bounce off ends of strip
  pos += dir;
  if(pos < 0) {
    pos = 1;
    dir = -dir;
  } else if(pos >= pixel.numPixels()) {
    pos = pixel.numPixels() - 2;
    dir = -dir;
  }
 }
}

void rainbow(int wait) {
  // Hue of first pixel runs 5 complete loops through the color wheel.
  // Color wheel has a range of 65536 but it's OK if we roll over, so
  // just count from 0 to 5*65536. Adding 256 to firstPixelHue each time
  // means we'll make 5*65536/256 = 1280 passes through this outer loop:
  for(long firstPixelHue = 0; firstPixelHue < 5*65536; firstPixelHue += 256) {
    for(int i=0; i<pixel.numPixels(); i++) { // For each pixel in strip...
      // Offset pixel hue by an amount to make one full revolution of the
      // color wheel (range of 65536) along the length of the strip
      // (strip.numPixels() steps):
      int pixelHue = firstPixelHue + (i * 65536L / pixel.numPixels());
      // strip.ColorHSV() can take 1 or 3 arguments: a hue (0 to 65535) or
      // optionally add saturation and value (brightness) (each 0 to 255).
      // Here we're using just the single-argument hue variant. The result
      // is passed through strip.gamma32() to provide 'truer' colors
      // before assigning to each pixel:
      pixel.setPixelColor(i, pixel.gamma32(pixel.ColorHSV(pixelHue)));
    }
    pixel.show(); // Update strip with new contents
    delay(wait);
  }
}
void flashRandom(int wait, uint8_t howmany) {
 randomSeed(analogRead(0));
  for(uint16_t i=0; i<howmany; i++) {
    // get a random pixel from the list
    int j = random(pixel.numPixels());

    // now we will 'fade' it in 5 steps
    for (int x=0; x < 5; x++) {
      int r = red * (x+1); r /= 5;
      int g = green * (x+1); g /= 5;
      int b = blue * (x+1); b /= 5;

      pixel.setPixelColor(j, pixel.Color(r, g, b));
      pixel.show();
      delay(wait);
    }
    // & fade out in 5 steps
    for (int x=5; x >= 0; x--) {
      int r = red * x; r /= 5;
      int g = green * x; g /= 5;
      int b = blue * x; b /= 5;

      pixel.setPixelColor(j, pixel.Color(r, g, b));
      pixel.show();
      delay(wait);
    }
  }
  // LEDs will be off when done (they are faded to 0)
}

void racingStripe(uint32_t c){
  int head = 0, tail = -10; // Index of first 'on' and 'off' pixels
  for(int i=0; i<pixel.numPixels()+10; i++) {
  pixel.setPixelColor(head, c); // 'On' pixel at head
  pixel.setPixelColor(tail, 0); // 'Off' pixel at tail
  pixel.show(); // Refresh strip
  delay(20); // Pause 20 milliseconds (~50 FPS)

  if(++head >= NUMPIXELS+10) { // Increment head index. Off end of strip?
    head = 0; // Yes, reset head index to start
  }
  if(++tail >= NUMPIXELS+10) tail = 0; // Increment, reset tail index
  }
}

void fillAll(uint32_t c) {
  uint16_t i, j;
    for(i=0; i<pixel.numPixels(); i++) {
      pixel.setPixelColor(i, c);
    }
    pixel.show();
}

void rainbow(uint8_t wait) {
  uint16_t i, j;

  for(j=0; j<256; j++) {
    for(i=0; i<pixel.numPixels(); i++) {
      pixel.setPixelColor(i, Wheel((i+j) & 255));
    }
    pixel.show();
    delay(wait);
  }
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
  uint16_t i, j;

  for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
    for(i=0; i< pixel.numPixels(); i++) {
      pixel.setPixelColor(i, Wheel(((i * 256 / pixel.numPixels()) + j) & 255));
    }
    pixel.show();
    delay(wait);
  }
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
  for (int j=0; j<10; j++) { //do 10 cycles of chasing
    for (int q=0; q < 3; q++) {
      for (int i=0; i < pixel.numPixels(); i=i+3) {
        pixel.setPixelColor(i+q, c); //turn every third pixel on
      }
      pixel.show();

      delay(wait);

      for (int i=0; i < pixel.numPixels(); i=i+3) {
        pixel.setPixelColor(i+q, 0); //turn every third pixel off
      }
    }
  }
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
  for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
    for (int q=0; q < 3; q++) {
      for (int i=0; i < pixel.numPixels(); i=i+3) {
        pixel.setPixelColor(i+q, Wheel( (i+j) % 255)); //turn every third pixel on
      }
      pixel.show();

      delay(wait);

      for (int i=0; i < pixel.numPixels(); i=i+3) {
        pixel.setPixelColor(i+q, 0); //turn every third pixel off
      }
    }
  }
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
  WheelPos = 255 - WheelPos;
  if(WheelPos < 85) {
    return pixel.Color(255 - WheelPos * 3, 0, WheelPos * 3);
  }
  if(WheelPos < 170) {
    WheelPos -= 85;
    return pixel.Color(0, WheelPos * 3, 255 - WheelPos * 3);
  }
  WheelPos -= 170;
  return pixel.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}

 

Hi @dlong4, I’d be happy to help share my love of DotStars (and NeoPixels). There are two concerns I have here before I look at your code that need to be addressed:

  1. You are attempting to power 144 DotStars from the board. This will not work and could cause damage to the board or worse. Please see Powering DotStar LEDs for instructions on how to power your strip with an external power supply.
  2. You are using 5V power and 3.3V logic. DotStars are often referred to as 5V devices, which isn’t strictly true. Reading the datasheet we can see that the VDD voltage is specified as 5V typical and logic voltage between 0.7VDD (e.g. 3.5V with 5V for VDD) and VDD + 0.3V. However, we can also see that an absolute minimum VDD voltage is not specified. I’ve happily ran DotStars with a VDD voltage of 3.3V and even lower. This leaves you with three options:
    a. You could use a logic level shifter to convert 3.3V logic to 5V. This is the best option, and they’re pretty cheap.
    b. You could use a lower voltage power supply - between 3V and 4.7V - to keep 3.3V logic in spec, though your lights will be dimmer.
    c. You could completely ignore this concern and continue troubleshooting once you address the major concern of providing an external power supply. You will not damage anything with a logic voltage that’s slightly too low, they’re just not guaranteed to be reliable - they may not recognize logic high. I would honestly do this.

Once you’ve got these powered from an external supply so you won’t damage anything and they can work, and addressed the logic voltage if you want to try that (I probably wouldn’t yet… it can be addressed later if it actually is a problem), then come back if you still have trouble and I’ll be happy to help you enjoy the magic of DotStars :slight_smile:

3 Likes